
 R2 corrections to asymptotically Lifshitz spacetimes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP10(2009)031

(http://iopscience.iop.org/1126-6708/2009/10/031)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:38

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/10
http://iopscience.iop.org/1126-6708/2009/10/031/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
0
(
2
0
0
9
)
0
3
1

Published by IOP Publishing for SISSA

Received: August 25, 2009

Accepted: September 25, 2009

Published: October 12, 2009

R2 corrections to asymptotically Lifshitz spacetimes

Da-Wei Pang

Center for Quantum Spacetime, Sogang University,

Seoul 121-742, Korea

E-mail: pangdw@sogang.ac.kr

Abstract: We study R2 corrections to five-dimensional asymptotically Lifshitz spacetimes

by adding Gauss-Bonnet terms in the effective action. For the zero-temperature back-

grounds we obtain exact solutions in both pure Gauss-Bonnet gravity and Gauss-Bonnet

gravity with non-trivial matter. The dynamical exponent undergoes finite renormalization

in the latter case. For the finite-temperature backgrounds we obtain black brane solutions

perturbatively and calculate the ratio of shear viscosity to entropy density η/s. The KSS

bound is still violated but unlike the relativistic counterparts, the causality of the boundary

field theory cannot be taken as a constraint.

Keywords: AdS-CFT Correspondence, Black Holes

ArXiv ePrint: 0908.1272

c© SISSA 2009 doi:10.1088/1126-6708/2009/10/031

mailto:pangdw@sogang.ac.kr
http://arxiv.org/abs/0908.1272
http://dx.doi.org/10.1088/1126-6708/2009/10/031


J
H
E
P
1
0
(
2
0
0
9
)
0
3
1

Contents

1 Introduction 1

2 Some backgrounds 3

2.1 Solutions with Lifshitz symmetry and invariant two-forms 3

2.2 Solutions in asymptotically Lifshitz spacetimes 5

3 R2 corrections to zero-temperature backgrounds 6

3.1 Solutions in pure Gauss-Bonnet gravity 6

3.2 Solutions with non-trivial matter fields 8

4 R2 corrections to black branes 9

5 Calculating η/s 10

5.1 Shear viscosity from the effective coupling of transverse gravitons 11

5.2 Causality cannot be a constraint 13

6 Summary and discussion 14

1 Introduction

The AdS/CFT correspondence [1–3] relates conformal field theories to gravitational dy-

namics in asymptotically AdS backgrounds. As a strong-weak duality, it has yielded many

important insights into the dynamics of strongly coupled field theories. For instance, the

hydrodynamic behavior of finite-temperature field theory can be reflected in the dual grav-

ity side [4]. Recently, there has been a great deal of progress in applying the AdS/CFT

correspondence to study condensed matter systems near a critical point, for reviews see [5].

There are many scale-invariant field theories in which time and space can

scale differently,

t → λzt, xi → λxi, (1.1)

where z is called the ‘dynamical exponent’. Such field theories with anisotropic scaling

symmetry are of interest in studying condensed matter systems near a critical point. The

corresponding gravity duals have been investigated extensively and there are mainly two

concrete cases of interest till now. One is the theory with Galilean boost symmetry as

well as anisotropic scaling symmetry, whose symmetry group is the Schrödinger group for

z = 2. The gravity duals were obtained in [6, 7] with the following metric

ds2 = −r4(dx+)2 − 2r2dx+dx− +
dr2

r2
+ r2d~x2. (1.2)
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The embedding of this spacetime into string theory and the finite-temperature gener-

alizations have been successfully realized in [8–11]. Such backgrounds, both the zero-

temperature case and the finite-temperature case, can be obtained by performing the “Null

Melvin Twist” [12] on the corresponding (black) D-brane configurations.

The other one has no boost symmetry, which is known as the Lifshitz case, and the

gravity duals were obtained in [13]

ds2 = L2

(

− r2zdt2 +
dr2

r2
+ r2d~x2

)

. (1.3)

Some other gravity solutions with similar anisotropic scale invariance were studied in [14].

Unlike the Schrödinger case, it is quite difficult to embed the Lifshitz background into string

theory, so is to find the finite temperature generalizations. The embedding of Lifshitz-like

fixed points into type IIB string theory was discussed extensively in [15], based on the

D3-D7 solutions introduced in [16]. Since the dilaton in the solution is not constant,

the anisotropic scale invariance only holds at the leading order of interactions. Some no-

go theorems for string duals of non-relativistic Lifshitz-like theories were proposed quite

recently in [17], where the authors argued that such gravity duals in the supergravities were

not possible. Black hole in asymptotically Lifshitz spacetimes were discussed in [18–21],

where most of the solutions were obtained numerically and exact solutions could be found

only in certain specific examples.

Several aspects of non-relativistic holography were studied in [22], where it was ob-

served that the Lifshitz geometry was a solution of a gravity theory coupled with a massive

vector. Furthermore, it was found that the following action

S =
1

16πGd+2

∫

dd+2x
√−g

[

R − 2Λ − 1

2
∂µφ∂µφ − 1

4
eλφFµνFµν

]

(1.4)

admitted a solution with anisotropic scaling symmetry

ds2 = L2

(

− r2zdt2 +
dr2

r2
+ r2

d
∑

i=1

dx2
i

)

,

Frt = qe−λφrz−d−1, eλφ = rλ
√

2(z−1)d,

λ2 =
2d

z − 1
, q2 = 2L2(z − 1)(z + d),

Λ = −(z + d − 1)(z + d)

2L2
. (1.5)

The metric is Lifshitz-like but the dilaton is not constant, so it cannot be seen as a genuine

gravity dual of Lifshitz-fixed points. However, such a solution is worth investigating, as it

also possesses exact solutions with finite temperature. Some properties of the corresponding

black branes were discussed in [23].

In this paper we will study R2 corrections to the above mentioned Lifshitz-like gravity

backgrounds. The 1/N effects in non-relativistic gauge-gravity duality was investigated

extensively in [24], where they argued that the dynamical exponent received finite renor-

malization and the ratio of shear viscosity to entropy density weakly violated the celebrated
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KSS bound 1/4π. Here we first study the R2 corrections to the zero-temperature cases

by solving the equations of motion explicitly. We find that an exact solution of Lifshitz

background can be found in pure Gauss-Bonnet gravity, while the dynamical exponent

undergoes a finite renormalization when non-trivial matter fields are included. We also

obtain the corresponding black brane solutions by perturbative methods and calculate the

ratio of shear viscosity to entropy density. The result also violates the KSS bound and

it reduces to the known result when the dynamical exponent z = 1. However, since the

boundary field theory is non-relativistic, the causality of the field theory cannot be taken

as a constraint on the ratio.

The rest of the paper is organized as follows: In section 2 we review some necessary

backgrounds, including the renormalization of the dynamical exponent and the solutions

in asymptotically Lifshitz spacetimes. The R2 corrections to the zero-temperature case are

studied in section 3 and the corrections to the black brane case are studied in section 4. We

calculate the ratio of shear viscosity to entropy density in section 5 through the effective

coupling of the transverse gravitons in the dual gravity side. A summary and discussion

will be given in the final section.

2 Some backgrounds

In this section we will review some backgrounds which are necessary for further inves-

tigations. One of the main results in [24], that is, both the radius of curvature and the

dynamical exponent z may be renormalized for non-relativistic Lifshitz metric, will be sum-

marized in section 2.1. The zero-temperature and black brane solutions in asymptotically

Lifshitz spacetimes, obtained in [22], will be reviewed in section 2.2.

2.1 Solutions with Lifshitz symmetry and invariant two-forms

The renormalization of the curvature radius and the dynamical exponent for both

Schrödinger and Lifshitz metrics was demonstrated in [24] in a beautiful way. Here we

just focus on the Lifshitz case, whose symmetry algebra contains the following generators:

Hamiltonian H, linear momenta Pi, angular momenta Mij and a dilaton operator D. The

commutators among H, Pi and Mij behave the same as usual, and the dilaton operator D

has the following non-trivial commutators

[D,Pi] = iPi, [D,H] = izH. (2.1)

We rewrite the (d + 2)−dimensional gravity duals of Lifshitz fixed points in [13] as

ds2 = L2

(

− dt2

r2z
+

dr2 + d~x2

r2

)

. (2.2)

The corresponding Killing vectors are

H = −i∂t, Pi = −i∂i, Mij = −i(xi∂j − xj∂i), D = −i(zt∂t + xi∂i + r∂r). (2.3)

Since we are trying to find Lifshitz-like solutions to the equations of motion of grav-

ity coupled to some matter sector, the Einstein tensor Gµν and the stress tensor Tµν are

– 3 –
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symmetric two-tensors invariant under the Lifshitz symmetries (2.3). The search for solu-

tions may be simplified if we expand the Einstein equations in a basis of such symmetric

invariant two-forms. Let τ = τµνdxµdxν be a symmetric two-tensor invariant under the

Lifshitz symmetries, i.e. Lvτµν = 0 for all the Killing vectors v in (2.3). The symmetry of

the two-tensor plus the conservation of the stress tensor ∇µτµν = 0 imply

τ = α
dt2

r2z
+ β

d~x2

r2
+

(

(d − 2)β − zα

d − 2 + z

)

dr2

r2
, (2.4)

where α, β are two constants. Thus it is a two-parameter family of conserved stress tensors.

Consider the action of gravity coupled to an arbitrary matter sector

S =
1

16πG

∫ √−g(R − 2Λ) + Sm(gµν , φi), (2.5)

where Sm denotes the matter part of the action and φi stand for the matter fields. Sm can

also contain higher derivative corrections to the Einstein-Hilbert action. The equations of

motion are

Rµν − 1

2
Rgµν + Λgµν = −8πGTµν , (2.6)

where Tµν = δSm/δgµν include the usual matter stress tensor and the contributions from

the higher curvature terms. The invariance of the stress tensor Tµν sets a non-trivial con-

straint on φi. The simplest constraint is to require that the fields themselves are invariant

Lvφi = 0. However, this is not strictly necessary if we want Tµν to be invariant. In [24],

it was demanded that any gauge invariant observables must be invariant under the full

symmetry. In the next subsection we will see that such a requirement can also be released.

Now let us focus on the Einstein equations. The left hand side is automatically a

conserved two-tensor invariant under the Lifshitz symmetries. Thus it can be written in

the form (2.4). It can be seen that α and β are simple functions of z and L, whose explicit

expressions will not be shown. On the other hand, the stress tensor takes the following form

Tµν = α(z, L, φi)
dt2

r2z
+ β(z, L, φi)

d~x2

r2
+

[

(d − 2)β(z, L, φi) − zα(z, L, φi)

d − 2 + z

]

dr2

r2
. (2.7)

Then the Einstein equations reduce to

α = α(z, L, φi), β = β(z, L, φi). (2.8)

Once the values of φi are fixed by the φ equations of motion, the above equations can be

seen as two equations for L and z.

Thus we can conclude as follows: The Lifshitz symmetry of the spacetime will be

deformed (by changing the value of z) but not broken once higher order corrections are

incorporated. In particular, if we can find a Lifshitz spacetime with certain z and L for

one action, then for any small deformations of the parameters in the action we may find

another solution with z′, L′ which are nearby values of z and L. Conversely, variations of

the action can only renormalize the parameters z and L in the metric.

– 4 –
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2.2 Solutions in asymptotically Lifshitz spacetimes

We will review the solutions which are asymptotic to Lifshitz metric obtained in [22],

including both zero-temperature and black brane cases. Consider the following action in

(d + 2)-dimensional spacetime (without higher derivative corrections)

S =
1

16πGd+2

∫

dd+2x
√−g

[

R − 2Λ − 1

2
∂µφ∂µφ − 1

4
eλφFµνFµν

]

, (2.9)

where Λ is the cosmological constant and the matter fields are a massless scalar and an

abelian gauge field.

Such a theory admits the following zero-temperature solution whose metric

is Lifshitz-like

ds2 = L2

(

− r2zdt2 +
dr2

r2
+ r2

d
∑

i=1

dx2
i

)

,

Frt = qe−λφrz−d−1, eλφ = rλ
√

2(z−1)d,

λ2 =
2d

z − 1
, q2 = 2L2(z − 1)(z + d),

Λ = −(z + d − 1)(z + d)

2L2
(2.10)

as well as black brane solution

ds2 = L2

(

− r2zf(r)dt2 +
dr2

r2f(r)
+ r2

d
∑

i=1

dx2
i

)

, f(r) = 1 − rz+d
+

rz+d
, (2.11)

where the other fields in the black brane solution remain the same as those in the zero-

temperature solution. It is found that the AdS spacetime is also a solution to the equations

of motion with φ = 0 and Frt = 0. Although the above metrics are Lifshitz-like or

asymptotically Lifshitz-like, such solutions cannot be thought of as genuine gravity duals

of Lifshitz fixed points, as the dilaton is not constant. However, such solutions are of

interest themselves due to the black brane solution. We can study the thermodynamic and

hydrodynamic properties of such black branes, which may be of help in understanding the

genuine gravity duals of Lifshitz fixed points at finite temperature.

In the last subsection, it was required that the gauge invariant observables must be

invariant under the full Lifshitz symmetry. Here we can see that such a requirement can be

released due to the coupling between the dilaton and the gauge fields. The stress tensor is

Tµν = −1

2
gµν

(

1

2
∂ρφ ∂ρφ +

1

4
eλφFρσF ρσ

)

+
1

2
∂µφ∂νφ +

1

2
eλφFµρFν

ρ. (2.12)

The components of the stress tensor can be obtained by substituting the values of the

matter fields in (2.10)

Ttt = (z − 1)

(

z

2
+ d

)

r2z, Trr = −z(z − 1)

2r2
, Tii =

1

2
z(z − 1)r2, (2.13)
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which are all invariant under the Lifshitz symmetries. Once higher derivative corrections

are incorporated, the equations of motion of the matter fields do not change and the

additional part of the stress tensor is comprised of the Riemann tensor of the background

geometry. Thus the stress tensor is still invariant under the Lifshitz symmetries.

3 R2 corrections to zero-temperature backgrounds

We shall study R2 corrections to the zero-temperature Lifshitz geometry in this section.

Firstly we will obtain a solution in pure Gauss-Bonnet gravity and then we will consider

the action appearing in (2.9) plus Gauss-Bonnet corrections. It should be emphasized that

both of the solutions are exact, while we will investigate R2 corrected black brane solutions

in the next section by perturbative methods.

The general action containing the curvature squared corrections can be written as

S =
1

16πG

∫

dDx
√−g

[

R − 2Λ + L2(α1RµνρσRµνρσ + α2RµνRµν + α3R
2)

]

+ Sm, (3.1)

where αi are arbitrary small coefficients and Sm denotes the matter sector of the action.

One specific model-Gauss-Bonnet gravity-has provided many interesting results, whose

action is

S =
1

16πG

∫

dDx
√−g

[

R − 2Λ +
λGB

2
L2(RµνρσRµνρσ − 4RµνRµν + R2)

]

+ Sm. (3.2)

Several exact solutions of black holes in Gauss-Bonnet gravity have been obtained, see

e.g. [25, 26]. FRW-like solutions and black holes for general five-dimensional R2 gravity

were studied in [27]. The conformal anomaly from higher derivative gravity in AdS/CFT

correspondence was studied in [28]. From now on we will focus on five-dimensional case

as the Gauss-Bonnet corrections are topological in four-dimensional spacetime and do not

play an important role. The Einstein equations derived from (3.2) are

Rµν − 1

2
Rgµν = −Λgµν + TM

µν + TR
µν , (3.3)

where TM
µν stands for the stress tensor of the matter sector and TR

µν comes from the Gauss-

Bonnet term

TR
µν =

λGB

2
L2

[

1

2
gµν(RγδλσRγδλσ − 4RγδR

γδ + R2) − 2RRµν

+4RµγRγ
ν + 4RγδRγµδν − 2RµγδλRν

γδλ

]

. (3.4)

3.1 Solutions in pure Gauss-Bonnet gravity

First let us consider Lifshitz-like solutions in pure Gauss-Bonnet gravity, i.e.without intro-

ducing matter fields. The Einstein equations (3.3) turn out to be

Rµν − 1

2
Rgµν = −Λgµν + TR

µν , (3.5)

– 6 –
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where TR
µν has been given in (3.4). The Lifshitz background can be written as

ds2 = L2

[

− dt2

r2z
+

1

r2
(dr2 + dx2

1 + dx2
2 + dx2

3)

]

. (3.6)

The non-vanishing components of the Ricci tensor are

Rtt =
z(z + 3)

r2z
, Rrr = −z2 + 3

r2
, Rii = −z + 3

r2
, i = 1, 2, 3, (3.7)

and the non-vanishing components of the stress tensor

TR
tt = −6λGB

r2
, TR

rr =
6λGBz

r2
, TR

ii =
2λGBz(z + 2)

r2
. (3.8)

Thus we can easily find that the Lifshitz background is a solution to the Einstein

equations when the Gauss-Bonnet coupling constant λGB and the cosmological constant Λ

take the following values

λGB =
1

2
, Λ = − 3

L2
. (3.9)

Here are some remarks on this solution:

• When z=1, the metric reduces to AdS, which is a solution to the Einstein equations

for any values of λGB and Λ.

• In the literatures studying Gauss-Bonnet black holes in AdS and dS spacetimes [26],

in order to obtain a meaningful black hole solution, the Gauss-Bonnet coupling con-

stant λGB should have an upper bound λupper
GB = 1/4. Here λGB goes beyond this

bound. We will go back to this issue when discussing the ratio of shear viscosity to

entropy density.

• In [24], an exact solution of Lifshitz geometry was obtained in pure R2 gravity, with

the coefficient in front of the R2 term and the cosmological constant

c1 =
L2

2z2 + 4z + 6
, Λ =

z2 + 2z + 3

L2
.

We can see that when the space is large, so is the higher order corrections, and

vice versa. This invalidates the perturbative description, as these solutions balance

the curvature terms against curvature squared terms, the quadratic approximation

cannot be expected to be reliable. Here we have similar situations and just as [24],

we can also expect that a non-trivial matter sector may solve this problem.

• In [25, 26], exact solutions of black holes in pure Gauss-Bonnet gravity were obtained.

However, due to the Birkhoff theorem, we cannot find exact solutions of black holes

with anisotropic scaling symmetry in pure Gauss-Bonnet gravity.

– 7 –
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3.2 Solutions with non-trivial matter fields

We will consider Lifshitz-like solutions with non-trivial matter fields in this subsection. To

be concrete, we shall add Gauss-Bonnet corrections to the effective action (2.9) and try

to find the corresponding solutions. Note that here the solutions are exact while we will

study the corrections in the black brane case by perturbative methods in the next section.

Now the Einstein equations are given by (3.3)

Rµν − 1

2
Rgµν = −Λgµν + TM

µν + TR
µν ,

where the stress tensor of the matter sector is

TM
µν = −1

2
gµν

(

1

2
∂ρφ ∂ρφ +

1

4
eλφFρσF ρσ

)

+
1

2
∂µφ∂νφ +

1

2
eλφFµρFν

ρ

and TR
µν has been shown in (3.4). In addition, the equations of motion for the matter

fields are

∂µ

(√−geλφFµν
)

= 0, (3.10)

∂µ

(√−g∂µφ
)

− λ

4

√−geλφFµνFµν = 0. (3.11)

Here we still make the ansatz for the metric

ds2 = L2

[

− dt2

r2z
+

1

r2
(dr2 + dx2

1 + dx2
2 + dx2

3)

]

.

After solving the equations of motion, we can find the following solution

φ = ±
√

6(1 − 2λGB)(z − 1) log r, Frt = qe−λφr2−z,

λ2 =
6

(1 − 2λGB)(z − 1)
, q2 = 2(1 − 2λGB)(z − 1)(z + 3)L2,

Λ = −(z + 2)(z + 3)

2L2
+

λGBz(z + 5)

L2
. (3.12)

Note that here the dynamical exponent z has been renormalized. Furthermore, λGB should

have an upper bound 1/2 to ensure a physical solution. Let us denote z = z0 + δz where

z0 is the dynamical exponent in the Einstein-matter theory. By fixing the cosmological

constant Λ and solving the linearized equations, we can arrive at

δz =
2λGBz0(z0 + 5)

(1 − 2λGB)(2z0 + 5)
. (3.13)

The z0 = 1 case should be treated separately. As can be seen from the unperturbed

solution (2.10), when z0 = 1, both the dilaton and the gauge field strength vanish, then the

theory reduces to pure Einstein gravity. The non-renormalization of the AdS case is a well

known fact. Furthermore, in [24], when considering four-dimensional Lifshitz spacetime,

it was found that the z0 = 2 case seemed to be protected. But there was no sign of an

extra symmetry protecting this solution and it could be renormalized under certain ad-hoc

higher order terms. Here we can see that z can also be renormalized in z0 = 2 case, so

z0 = 2 is nothing special compared to other cases, which supports their argument.

– 8 –
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4 R2 corrections to black branes

In this section we consider Gauss-Bonnet corrections to black branes. Unfortunately, it

is quite difficult to find an exact solution which is asymptotic to Lifshitz spacetime in

Gauss-Bonnet gravity. Then we have to solve the equations of motion perturbatively,

following [29].

Considering the following action

S =
1

16πG5

∫

d5x
√−g

[

R − 2Λ − 1

2
∂µφ∂µφ − 1

4
eλφFµνFµν

+
λGB

2
L2(RµνρσRµνρσ − 4RµνRµν + R2)

]

, (4.1)

the corresponding equations of motion remain the same as before

Rµν − 1

2
Rgµν = −Λgµν + TM

µν + TR
µν ,

TM
µν = −1

2
gµν

(

1

2
∂ρφ ∂ρφ +

1

4
eλφFρσF ρσ

)

+
1

2
∂µφ∂νφ +

1

2
eλφFµρFν

ρ,

TR
µν =

λGB

2
L2

[

1

2
gµν(RγδλσRγδλσ − 4RγδR

γδ + R2) − 2RRµν

+4RµγRγ
ν + 4RγδRγµδν − 2RµγδλRν

γδλ

]

,

∂µ(
√−geλφFµν) = 0,

∂µ(
√−g∂µφ) − λ

4

√−geλφFµνFµν = 0. (4.2)

Note that the equations of motion for the matter fields do not change after incorporating

the Gauss-Bonnet corrections.

Let us focus on the right hand side of the Einstein equations. Since we are trying to

solve the equations at the leading order of λGB, we can substitute the unperturbed metric

ds2 = L2

[

− f(r)

r2z
dt2 +

dr2

r2f(r)
+

1

r2
(dx2

1 + dx2
2 + dx2

3)

]

, f(r) = 1 − rz+3

rz+3
+

into TR
µν . Furthermore, we neglect the backreactions of the Gauss-Bonnet corrections to

the matter fields and substitute the unperturbed values of those fields into TM
µν . The ansatz

for the metric is

ds2 =
L2

r2

[

− e2a(r)dt2 + e−2b(r)dr2 + dx2
1 + dx2

2 + dx2
3

]

. (4.3)

The components of the Ricci tensor can be combined as

Rt
t − Rr

r =
3

L2
e2b(r)r(a′(r) − b′(r)), (4.4)

1

3
(Rt

t − Rr
r) − Rx

x = − 1

L2

(

e2b(r)

r4

)′

r5, (4.5)

– 9 –
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where the prime stands for derivative with respect to r. On the other hand, we have the

following expressions due to the Einstein equations

Rt
t − Rr

r = TMt

t + TRt

t − TMr

r − TRr

r, (4.6)

1

3
(Rt

t − Rr
r) − Rx

x =
2

3
(TMt

t + TMr

r − Λ). (4.7)

Therefore,

e2b(r) = −2

3
L2r4

[
∫

dr

r5
(TMt

t + TMr

r − Λ) + const

]

, (4.8)

a(r) = b(r) +
L2

3

∫

dr

r
e−2b(r)(TMt

t + TRt

t − TMr

r − TRr

r). (4.9)

After substituting the unperturbed metric and matter fields, we can obtain the follow-

ing perturbative black brane solution

ds2 = L2

[

− f(r)

r2z
h(r)dt2 +

dr2

r2f(r)
+

1

r2
(dx2

1 + dx2
2 + dx2

3)

]

, (4.10)

where

z = z0 + 2λGB(z0 − 1), h(r) = exp

[

4λGB
z0 − 1

z0 + 3

(

r

r+

)z0+3]

,

f(r) = 1 −
(

r

r+

)z0+3

+ λGB

[

1 −
(

r

r+

)z0+3]2

. (4.11)

One can check that this solution agrees with the one appearing in [29] when z0 = 1. For

general cases, the horizon still locates at r = r+ and the Hawking temperature is

TH =
1

4π

z0 + 3

rz
+

(

1 + 2λGB
z0 − 1

z0 + 3

)

. (4.12)

For black branes in Gauss-Bonnet gravity, the area law for entropy still holds [30], then

SBH =
1

4π

L3V3

r3
+

, (4.13)

where V3 denotes the volume of the spatial directions.

5 Calculating η/s

The AdS/CFT correspondence has provided us an efficient way to study the dynamics of

strongly coupled gauge theories. One remarkable example is the calculation of the ratio of

the shear viscosity over entropy density η/s. It has been found that

η

s
=

1

4π

is a universal result for all gauge theories with Einstein gravity duals in the large N limit.

Furthermore, it was conjectured that 1/4π is a universal lower bound for all materials,
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which is known as the KSS bound [31]. Later the authors of [29, 32, 33] calculated the

ratio in R2 gravity and found that the lower bound was violated. A new lower bound

4/25π was proposed in [33] by considering the causality of the dual field theory. For more

discussions on violation of the KSS bound in higher derivative gravity, see [34].

It was conjectured that the shear viscosity is completely determined by the effective

coupling of the transverse gravitons on the horizon in the dual gravity description [35]. This

was confirmed in [36] via the scalar membrane paradigm and in [37] by calculating the on-

shell action of the transverse gravitons. Such an effective action in a given background

was assumed to be a minimally coupled massless scalar with an effective coupling which

depends on the radial coordinate, while in Einstein gravity the effective coupling is a

constant. However, this formalism is not covariant under coordinate transformations, then

the coordinate system of the background geometry also affects the form of the action of

transverse gravitons. In [38], a new formalism was proposed, where a new three-dimensional

effective metric g̃µν was introduced and the transverse gravitons were minimally coupled

to this new effective metric. The action in this new formalism can take a covariant form.

Similar discussions on this issue were also presented in [39].

We shall calculate the shear viscosity of field theory with R2 corrected black brane

dual using the approach proposed in [38]. As a non-relativistic theory, the causality of the

boundary field theory cannot be treated as a constraint on the lower bound of η/s.

5.1 Shear viscosity from the effective coupling of transverse gravitons

The shear viscosity can be calculated via the Kubo formula

η = lim
ω→0

1

2ωi

(

GA
x1x2,x1x2

(ω, 0) − GR
x1x2,x1x2

(ω, 0)
)

, (5.1)

where the retarded Green’s function GR
µν,λρ is defined by

GR
µν,λρ = −i

∫

d4xe−ik·xθ(t) < [Tµν(x), Tλρ(0)] >, (5.2)

and the advanced Green’s function satisfies GA
µν,λρ(k) = GR

µν,λρ(k)
∗
. These Green’s func-

tions are defined on the field theory side. According to the field-operator correspondence,

such Green’s functions can be calculated through the effective action of the gravitons of

the dual gravity theory.

We can choose spatial coordinates so that the momentum of the perturbation points

along the x3 ≡ z axis. Considering tensor perturbation h12 = h12(t, u, z) with u being the

radial coordinate, we denote φ = h1
2 and write φ as φ(t, u, z) = φ(u)e−iωt+ipz . For gravity

theories in which the transverse gravitons can be decoupled from other perturbations, the

effective bulk action of the transverse gravitons can be written in a general form

S =
V1,2

16πG

(

− 1

2

)
∫

d3x
√

−g̃
(

K̃(u)g̃MN ∇̃Mφ∇̃Nφ + m2φ2
)

(5.3)

up to some total derivatives. Here g̃MN is a three-dimensional effective metric, m is an

effective mass and ∇̃M is the covariant derivative using g̃MN . Notice that φ is a scalar
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in the three dimensions t, u, z, while it is not a scalar in the whole five dimensions. We

write the action in the three-dimensional form so that it is general covariant and K̃(u) is a

scalar under general coordinate transformations. It should be pointed out that this is not

the ordinary dimensional reduction. In the following we will use gµν to denote the whole

five-dimensional background.

Recalling the corrected black brane metric in (4.10) and performing the following

coordinate transformations

ρ =
1

r
, ρ+ =

1

r+
,

(

ρ+

ρ

)z0+3

= u2, (5.4)

the black brane metric metric turns out to be

ds2 = L2

[

− g(u)(1 − u)dt2 +
1

h(u)(1 − u)
du2 +

ρ2
+

uA
(dx2

1 + dx2
2 + dx2

3)

]

, (5.5)

where

g(u) = ρ2z
+ u

− 4z

z0+3 (1 + u)(1 + λGB(1 − u2)) exp

[

4λGB
z0 − 1

z0 + 3
u2

]

,

h(u) =
1

4
(z0 + 3)2u2(1 + u)(1 + λGB(1 − u2)), A =

4

z0 + 3
. (5.6)

Then the horizon of the black brane locates at u = 1 and the boundary locates at u = 0.

Following [38], we write down the action of the transverse gravitons in momentum space

S =
V1,2

16πG

(

− 1

2

)
∫

dwdp

(2π)2
du

√

−g̃
[

K̃(u)(g̃uuφ′φ′ + w2g̃ttφ2 + p2g̃zzφ2) + m2φ2
]

, (5.7)

where

φ(t, u, z) =

∫

dwdp

(2π)2
φ(u; k)e−iwt+ipz ,

k = (w, 0, 0, p), φ(u;−k) = φ∗(u; k), (5.8)

and the prime denotes derivative with respect to u. The corresponding equation of motion

is given by

φ′′(u; k) + A(u)φ′(u; k) + B(u)φ(u; k) = 0, (5.9)

where

A(u) =
(
√−g̃K̃(u)g̃uu)

′

√−g̃K̃(u)g̃uu
, B(u) = −g̃uu

(

g̃ttw2 + g̃zzp2 +
m2

K̃(u)

)

. (5.10)

Furthermore, by repeating the calculations in section II of [38], we can find that here we

still have the following formula for η

η =
1

16πG
(
√

g̃zzK̃(u))|u=1. (5.11)

Next we shall calculate the effective action of the transverse gravitons on the back-

ground (5.5). From the first order Einstein equations we can see that the transverse gravi-

tons can get decoupled from other perturbations. Then we can obtain the effective action
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of the transverse gravitons by keeping quadratic terms of φ in the original action (4.1).

The action can be written in the form of (5.7) with three-dimensional effective metric

g̃uu =

(

1 +
λGB

2

Ag′ttg
uu

ugtt

)

guu, (5.12)

g̃tt =

[

1 +
λGB

2

(

Ag′uu

u
− (A2 + 2A)guu

u2

)]

gtt, (5.13)

g̃zz =

[

1 +
λGB

2

(

g′2ttg
uu

g2
tt

− g′ttg
′uu

gtt
− 2guug′′tt

gtt

)]

gzz. (5.14)

The m2 term vanishes due to the Einstein equations of the background metric. Note that

when z0 = 1, i.e. A = 1, the above expressions agree with those obtained in [38] with

vanishing dilaton field.

By using the formula K̃(u) =
√−g/

√−g̃ and recalling the fact that the area law still

holds for black branes in Gauss-Bonnet gravity, we can arrive at the final result

η

s
=

1

4π

[

1 − λGB

2
Ah(1)

]

=
1

4π
[1 − (z0 + 3)λGB]. (5.15)

Here are some remarks on this result:

• When z0 = 1, the black brane metric is asymptotically AdS. We can recover the

result obtained in [32].

• For general z0 6= 1, in order to obtain a non-vanishing η/s, λGB should have an upper

bound 1/(z0 + 3). The upper bound of λGB was discussed in [40] where it was found

to be 1/4 by the constraints of causality and stability. Here a similar upper bound

in non-relativistic theory requires further understanding.

• In the literatures discussing the ratio of shear viscosity over entropy density in higher

derivative theory of gravity, the new lower bound of η/s–4/25π-can be obtained by

considering the causality of the boundary field theory. However, here we cannot take

such a constraint as the dual field theory is non-relativistic. We will address it in

detail in next subsection.

5.2 Causality cannot be a constraint

It was discovered that the KSS bound can be violated in R2 gravity, but the causality

of the boundary field theory can constrain the parameters and introduce a new lower

bound [32, 33]. But here we will see that causality cannot be a constraint in a non-

relativistic theory.

Following [38], we can transform the action of the transverse gravitons into a minimally

coupled form

S =
V1,2

16πG
−1

2

∫

d3x
√−ḡ

(

ḡMN∂Mφ∂Nφ + m̄2φ2
)

, (5.16)

with

ḡMN = K̃(u)−2g̃MN , m̄2 = K̃(u)−3m2. (5.17)
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For the case at hand, m̄2 term vanishes, so the equation of motion is

ḡMN ∇̄M∇̄Nφ = 0. (5.18)

Then we can apply the geometrical optics approximation in the large momentum limit.

The wave function is written in the form φ = φen(t, u, z)eiθ(t,u,z), where φen stands for a

slowly changing envelope function and θ is a rapidly varying phase function. Expanding

the equation of motion at leading order, we obtain

dxM

ds

dxN

ds
ḡMN = 0, (5.19)

where dxM/ds = ḡMN ∇̄Nθ.

Due to translation symmetries in t and z directions, ω = i∇̄tθ and q = −i∇̄zθ are still

conserved integrals of motion along the geodesic. Then (5.19) can be written as

(

du

ds

)2

= (−ḡttḡuuq2)

[

ω2

q2
− ḡzz

−ḡtt

]

. (5.20)

If we assume q2 > 0 and denote s̃ = s
√

−ḡttḡuuq2, we can get

(

du

ds̃

)2

=
ω2

q2
− ḡzz

−ḡtt
. (5.21)

This equation describes a one-dimensional system with a particle of energy ω2

q2 moving in

a potential ḡzz

−ḡtt . The effective geometry can be expressed as

ds2 = ḡMNdxMdxN = −ḡtt

(

− dt2 +
1

c2
g

dz2

)

+ ḡuudu2, (5.22)

where

c2
g =

ḡzz

−ḡtt
=

g̃zz

−g̃tt
(5.23)

denotes the local “speed of graviton” on constant u hypersurface.

In the relativistic cases, c2
g = 0 on the horizon and c2

g = 1 at infinity. One can expand

c2
g near the boundary and require that it should be smaller than one to avoid causality

violation. This requirement gives a new lower bound on η/s. But here the situation is

quite different, as it can be easily seen that c2
g → ∞ at the boundary u = 0 by using (5.13)

and (5.14). This should not be surprising as the boundary field theory is non-relativistic.

So we cannot take causality as a constraint on η/s.

6 Summary and discussion

We study R2 corrections to asymptotically Lifshitz spacetimes in five dimensions. For

the zero-temperature background, we obtain exact solutions both in pure Gauss-Bonnet

gravity and in Gauss-Bonnet gravity with non-trivial matter. In the latter case we find that

the dynamical exponent z undergoes a finite renormalization. For the finite-temperature
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background, we obtain perturbative solutions in Gauss-Bonnet theory with non-trivial

matter. The ratio of shear viscosity over entropy density is also calculated. It violates the

KSS bound but here causality cannot be treated as a constraint due to the non-relativistic

nature of the boundary theory.

The violation of the KSS bound in non-relativistic theory with higher derivative cor-

rection was already observed in [24], where they obtained

η

s
=

1

4π

(

1 − 1

2N

)

(6.1)

for asymptotically Schrödinger black holes. Here N denotes the rank of the gauge group

and this result is the same as the relativistic counterparts. Since the near horizon geometry

of the Schrödinger black holes is the same as that of usual AdS black holes, one can safely

obtain the above result following the arguments in [36]. However, the result obtained

in this paper is different from the relativistic case. According to [36], this is natural as

the Lifshitz black branes and the AdS counterparts have different near horizon structures.

Furthermore, due to the difficulty of embedding the Lifshitz background into string/M

theory [17], the corrections to η/s for Lifshitz black branes are difficult to evaluate in the

context of string /M theory.

Recently there have been several interesting discussions on higher derivative corrections

to η/s, see e.g. [41–44]. The causality of the boundary field theory plays an important role

in constraining η/s. Here causality cannot be constraint since the boundary field theory is

non-relativistic. However, as argued in [24], the observations in [45] would suggest that the

problem with violations of KSS bound are as much about unitarity and locality as about

causality, and should persist in the non-relativistic limit. The unitarity and locality might

be served as new constraints on the KSS bound in non-relativistic theory and it would be

interesting to investigate this topic in future.
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